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The Asymmetric Six-Vertex Model 
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The exact solution of the asymmetric six-vertex model, published nearly without 
derivation by Sutherland et al. in 1967, is rederived in detail. The transfer matrix 
method and the Bethe Ansatz solution for the free energy (which can be 
calculated from an integral equation) are discussed. For some special cases (zero 
or maximal polarization) the integral equation can be solved exactly. In addi- 
tion, an asymptotic analysis, valid for small but nonzero polarization, is carried 
out. The analytical properties of the results and their relevance for the BCSOS 
model are discussed. 

KEY WORDS:  Six-vertex model; transfer matrix; Bethe Ansatz; BCSOS 
model. 

The six-vertex mode l  was in t roduced  by Slater  (1) to describe the thermo-  
dynamica l  behav io r  of cer ta in  3-d imensional  crystals,  such as ice and 
po tas s ium d ihydrogen  phospha t e  ( K D P ) .  The essential  p rope r ty  these crys- 
tals have in c o m m o n  is tha t  the oxygen groups  in ice and the phospha te  
groups  in K D P  form a lat t ice of coo rd ina t i on  number  four, with a 
hydrogen  a t o m  between each pa i r  of lat t ice sites. Assuming  local  electric 
neutra l i ty ,  Slater  p r o p o s e d  the so-cal led ice rule: each lat t ice site should  
have two hydrogen  a toms  near  to it and  two a bit  further  removed  from 
it. One  easily verifies tha t  the four hydrogen  a toms  su r round ing  a given 
lat t ice site can be a r ranged  in precisely six  different ways. Slater  fur ther  
p r o p o s e d  tha t  the t h e r m o d y n a m i c  proper t ies  of crystals  like ice and K D P  
could  be s tudied f rom a 2-d imens iona l  model ,  where the six possible  
a r rangements  of the hydrogen  a toms  are represented  by six different ver- 
tices. The  resul t ing so-cal led six-vertex mode l  was first solved by Lieb (2) for 
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important special values of the vertex energies. The general, or asymmetric, 
six-vertex model was then solved by Sutherland. (3) Further results were 
published in ref. 4. 

However, apart from the results that were published almost without 
derivation by Sutherland e t  al., (41 there exists in the literature only a partial 
treatment of the asymmetric six-vertex model by Lieb and Wu (5~ and of 
course an exact solution of the symmetric six-vertex model by Lieb. (2) The 
fact that a detailed solution is lacking in the literature is extremely unfor- 
tunate, since this hampers the study of related models. In particular, the 
direct motivation for this work is that several microscopic models for the 
equilibrium shape of crystals (6-8) can be mapped exactly onto the six-vertex 
model. A prerequisite for the study of these models for equilibrium crystal 
shapes is therefore that the solution of the six-vertex model is well under- 
stood. For this reason we discuss the asymmetric six-vertex model in detail 
below. The methods and results presented in this paper will form the basis 
for the analytical and numerical studies of equilibrium crystal shapes which 
will be published elsewhere. (9' 1o) 

This paper is organized as follows. In Section 1 we give a brief intro- 
duction to the six-vertex model, where the notations and definitions used 
in this paper are explained and some general properties are discussed. The 
method of solution, i.e., the calculation of the free energy with the help 
of the transfer matrix method and the Bethe Ansatz, is presented in 
Section 2. The equation for the free energy is analyzed in Sections 3-5. 
The antiferroelectric phase of the model is discussed in Section 3, the para- 
electric phase in Section 4. Section 5 contains results concerning the phase 
with maximal polarization. A summary is given in Section 6. Technical 
details are treated in Appendices A-E. 

1. INTRODUCTION TO THE SIX-VERTEX MODEL 

Consider a two-dimensional quadratic lattice with N sites in the 
horizontal and M sites in the vertical direction. The hydrogen bonds 
between the atoms on the lattice sites (the vertices) form electric dipoles 
and hence can be represented by arrows on the lattice bonds, e.g., --H- can 
be represented by ~ .  For each vertex there are 16 possible configurations 
of the four bonds, but only the 6 configurations with two arrows pointing 
in and two arrows pointing out satisfy the ice rule (see Fig. 1). In Fig. 2 we 
give examples for configurations of the six-vertex model with periodicity 
in the horizontal direction. Yang (4) showed that the most general, the 
so-called asymmetrix six-vertex model, where all vertices have different 
energies, is equivalent to the symmetric six-vertex model in the presence of 
an external electric field. (The field removes the symmetry with respect to 
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Fig. 1. The allowed six-vertex configurations. 

reversing all dipoles.) If the energies of horizontal and vertical dipoles in 
the horizontal and vertical electric fields are denoted by 2h and 2v, respec- 
tively, the following energies for the six allowed vertices are obtained (see 
also Fig. 1): 

E1 = - - 1 6  - - h  - -7 )  

e 2 = - � 8 9  +h  +v  

e3 = �89 - h  +v  

e 4 = 15 ---~h - - u  

~5 = - - ~  

~6 = - -  ~ (I.1) 

Note that e5 = ~6 does not mean any restriction. It is obvious that vertex 
5 is a sink of horizontal arrows and vertex 6 a source. Because of the 
horizontal periodicity, the numbers of sources and sinks must be equal (see 
Fig. 2) and hence their energies occur in the total energy of a six-vertex 
configuration only in the combination e5 + e6 .(11) It can also easily be seen 

R 

Fig. 2, Example for corresponding R- and L-configurations. 
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that the number of down arrows n (or up arrows N-n) must be equal in 
each row of vertical bonds in order to obtain vertex configurations which 
satisfy both the ice rule and the horizontal periodicity. It will turn out that 
the conservation of n is essential for the solubility of the asymmetric six- 
vertex model. An additional consequence of the ice rule is that vertices 5 
and 6 must occur alternately. 

Before dealing with the method that can be used to calculate the parti- 
tion function of this model, we discuss the physical properties that can 
already be obtained from the vertex energies (1.1). First we define a few 
useful quantities: 

~exp(fi6) 

~ �89 + ~ 1 - exp(2fle)] 

H~exp(2flh) 

V~exp(2flv) 

1.2) 

1.3) 

1.4) 

(1.5) 

with fl = 1/kT, where k is Boltzmann's constant and T the temperature. 
Consider the vertex energies (1.1) for vanishing electric fields 

(h = v = 0). There are two types of models possible, depending on whether 
the vertices 5 and 6 with zero net polarization have the lowest energy or 
the vertices with nonvanishing net polarization (vertices 1 and 2 or vertices 
3 and 4). The first type has two degenerate antiferroelectric ground states 
in zero field (with alternating vertices 5 and 6). The second type has two 
degenerate ferroelectric ground states with opposite polarizations according 
to the net polarizations of the vertices 1 or 2 (or 3 or 4, respectively). If we 
concentrate, for example, upon nonnegative values for 6, the first type, 
called intrinsically antiferroelectric, ~5) occurs for e > �89 >~ 0 and the second, 
intrinsically ferroelectric, for e ~< �89 (Vertices 3 and 4 can only obtain the 
lowest energy in zero field if 6 is chosen negative. This case is discussed in 
ref. 5.). These two model types correspond to complementary ranges for A 
as a function of the temperature. One observes the following behavior: 

1. For  intrinsically antiferroelectric models 

A~�89 if T ~ o e  

A ~  - ~  if T -~0  

. For  intrinsically ferroelectric models 

AS�89 if T--, oe 

A ~ o c  if T--*0 
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From the vertex energies in the presence of an electric field (1.1) one can 
obtain the ( T =  0) phase diagram of the six-vertex model in the (h, v) plane. 
By comparing the energies el, e2 ..... ~6 one can find out in which region of 
the (h, v) plane a given vertex has the lowest energy. (5) Figure 3 shows an 
example of such a phase diagram with e > �89 > 0. Region 5, where vertices 
5 and 6 occur alternately, is a rectangle the short sides of which have a 
length proportional to x / 2 ( e - � 8 9  and the long sides of which have a 
length proportional to ~ (e + �89 Note that the isotropic model (the so- 
called F-model) occurs for 6 =0 ,  while the extremely anisotropic model 
occurs in the limit (e-�89 0. The corresponding phase diagram for the 
ferroelectric model can be obtained in the same way. (s) In spite of these 
different physical properties depending on the values of c5 and e, the asym- 
metric six-vertex model can be solved for both model types simultaneously, 
as we shall see in the next section. 

The vertex energies (1.1) show also that the six-vertex model in the 
presence of an electric field is symmetric with respect to reversing all 
arrows and the electric field. Hence we conclude that its free energy F(h, v) 
has ~he following symmetry: 

F(h, v) = F(v, h ) = F ( - h ,  - v )  = F ( - v ,  - h  ) (1.6) 

",,,% 
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~ 
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Fig. 3. ( T =  0) phase diagram for an intrinsically antiferroelectric model with e > �89 > 0. 
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Thus, the free energy can be obtained in the entire (h, v) plane from the free 
energy in the region v >t I h[. The physics of the model can be described 
alternatively with the help of the Legendre transform of F(h, v), the free 
energy F(x, y) as a function of the horizontal and vertical polarizations x 
and y per horizontal and vertical bond, respectively. The vertical polariza- 
tion per vertical bond can be defined in terms of N and n as follows: 

N -  2n 
y (1.7) 

N 

In the thermodynamic limit ( N ~  oo), y will become a continuous 
quantity. It follows directly from the definition that - 1  ~< y ~  1. The 
horizontal polarization can be interpreted in an analogous way, with 
- 1  ~< x ~ 1, however, not formulated in a simple way like y. In terms of 
x and y, F(x, y) shows the same symmetry as F(h, v). (4) The method of 
solution of the six-vertex model, however, will lead to the free energy 
depending on h and y, as will be shown in the next section. The functions 
F(x, y) and F(h, v) can be obtained from this result by the following 
Legendre transformations: 

F(x, y)=F(h, y )+hx  (1.8) 

with 

and 

with 

8F(h, y) y (1.9) 
x -  8h 

F(h, v)= F(h, y ) -  vy (1.10) 

OF(h, y) h (1.11) V 8y 

Note that all three free energies are defined per lattice site. 

2. M E T H O D  OF S O L U T I O N  

2.1. The  Transfer  M a t r i x  M e t h o d  

In this section we sketch the so-called transfer matrix method which 
can be used to calculate the partition function of the asymmetric six-vertex 
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model. A detailed treatment is given by Lieb, 12) Lieb and Wu,/5; or 
Baxter, (11) for example. 

One chooses periodic boundary conditions in the horizontal and verti- 
cal directions. Consider now a row of N vertical bonds. A state of such a 
row (with index k) is the configuration of up or down arrows on these 
bonds, denoted by ~b k. Next one defines the transfer matrix T with elements 
Tk~ = Z '  exp(-flE~z) which couple the states of two adjacent rows with 
configurations ~bk and ~b t. The sum }2' is over all configurations of the 
horizontal bonds that are allowed by the ice rule and the periodic 
boundary conditions. The energy Ekz is the sum of the vertex energies for 
the vertices so obtained. It is easy to show that the partition function Z can 
be written in terms of the transfer matrix as follows: 

2 N 

Z = T r a c e ( T M ) =  ~ (Aj) M (2.1) 
j = l  

where the Aj are the eigenvalues of T. In the thermodynamic limit 
(M, N ~  Go) one obtains from Eq. (2.1) 

lira In Z = N . M ~ M - N  max A , ) ~ - l i m  l l n A  (2.2) 

The problem of calculating the partition function has thus been reduced to 
determining the maximal eigenvalue of the transfer matrix. 

As explained in the previous section, the number of down arrows n 
must be the same in two adjacent rows of vertical bonds. For  that reason 
Tkt = 0 unless ~b k and ~b t have the same number of down arrows. Thus, T 
is a block diagonal matrix with blocks of dimension (~) for given n 
(0 ~< n ~< N) and the eigenvalue equation for T can be solved in each block 
separately. Each configuration with given n can be characterized by the 
positions of the down arrows, 

l ~ < x l < x 2 <  ... < x n < ~ N  (2.3) 

Furthermore, for each R-combination of two rows of vertical bonds 
with x i_  1 <<, y i ~ x i  (leading to a row of vertices whose first and last 
horizontal arrows are oriented to the right) one can construct an 
L-combination (leading to a row of vertices whose first and last horizontal 
bonds point to the left) with xt<~ y~<~Xi+l by exchanging the two rows 
of vertical bonds and reversing all horizontal bonds (see Fig. 2 for an 
example). Therefore, the transfer matrix can be written as a sum of two 
terms, 

T = T R + T  L 
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Explicit expressions for the elements of the transfer matrix Tk~ 'L are given 
by Lieb and Wu. (5~ In general, T is a real but not a symmetric matrix. In 
a given subspace n one obtains for the logarithm of the partition function 

lim in Z(n) = lim max (ln AR(n ), In AL(n)) (2.4) 
M , N  ~ oo M - N  N ~ ~ R , L  

In the thermodynamic limit M, N ~ o% while n/N = const, it is convenient 
to replace the discrete n by the continuous vertical polarization per vertical 
bond y [defined by Eq. (1.7)]. Thus, one obtains from Eq. (2.4) the free 
energy per lattice site of the six-vertex model as a function of y (and h, the 
dipole energy in the horizontal electric field). 

To find the maximal eigenvalue of T in a subspace n, i.e., the free 
energy, two methods have been used. The older one has been developed by 
Lieb (2~ for two-dimensional ice (a six-vertex model with all vertex energies 
equal to zero). This method works as follows. According to the Perron-  
Frobenius theorem, (12) the only eigenvector of the transfer matrix in sub- 
space n with real nonnegative coefficients is the one corresponding to the 
(nondegenerate) maximal eigenvalue. For  this eigenvector one makes the 
following Bethe Ansatz: 

~(xI'"" XN)= ~ A(P) exp (ij ~ kejxj) (2.5) 

where the sum is over the n! permutations P. The n wave numbers k are 
chosen to be distinct modulo 27r, the amplitudes A are complex functions 
defined on the permutations P, and the xi obey (2.3). Substitution of this 
Ansatz into the eigenvalue equation of T in subspace n yields one term 
proportional to the Ansatz that can be identified with the desired maximal 
eigenvalue, provided that the remaining terms are equal to zero. This con- 
dition leads to n consistency equations for the n wave numbers k and, in 
addition, to certain conditions on the amplitudes A. This is a lengthy 
procedure. The second method is much more elegant. Jayaprakash and 
Sinha (13) use Baxter's commuting transfer matrix technique to construct the 
eigenvectors of the transfer matrix. (Note that the asymmetric six-vertex 
model is not contained as a special case in Baxter's solution of the eight- 
vertex model.) The maximal eigenvalue A(n) as well as the system of 
consistency equations then follow immediately. 

2.2. Calculat ion of the Free Energy 

From both methods one obtains for the maximal eigenvalue in the 
subspace n 
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A(n) =_ AR(n) + AL(n) = (Ht/) N/2 f i  2A - q - H exp(ikj) 

+ (Hq)  ,,,/2 f i  2A - q - 1 - - H  -1 exp(- ik j )  
j=l  1--q-~H-~ exp(-ikj) 

(2.6) 

where the wavenumbers kj (1 <~j~n) of the Bethe Ansatz (2.5) obey the 
following system of consistency equations: 

exp(ik+N) = ( - 1)"- 1 f i  1 + H 2 exp[i(kj + k,)] - 2AH exp(ik+) 
)= 1 1 + H 2 exp[i(kj+ kt) ] 2AHexp(ikj) 
j r  

(2.7) 

[The definition of A is given in Eq. (1.3).] 
Now one has to solve the consistency equations (2.7) and to substitute 

the solution into Eq. (2.6) to calculate the maximal eigenvalue A(n) 
explicitly. Following the method of Sutherland et  a/., (4) one defines a 
complex variable po = kj - i In H. In terms of this new variable (2.7) has the 
same form as the corresponding system of equations for the one-dimen- 
sional quantum Heisenberg chain, (14) albeit with complex wavenumbers pO. 
Hence one can adopt the method used there. Following the lines of ref. 14, 
we introduce the function O(p ~ pO) by rewriting the RHS of Eq. (2.7) as 

exp( ipON) = H:V(_ 1)n-1 12i exp[ iO(pO, pO)] 
j_- i  

(2.8) 

The explicit form of this function is given in ref. 14. Because of 
O(pO, pO)= 0 the restriction j r  l can be lifted. For the logarithm of (2.7) 
in the rewritten form one then obtains 

1 1 & pO= - i l n H + - - I ~ + - -  )_.. O(p ~ pO), 
N Ng= l 

l <~l<~n (2.9) 

where the term I l=  ~ ( 2 / - n - 1 )  arises from the choice of a phase factor 
( - 1 )~ - 1 = exp[i~z(2l- n - 1 )]. Note that the It are arranged symmetrically 
with respect to the origin between ( -  n + 1) and (n - 1). 

An explicit solution of Eq. (2.9) is only possible in the thermodynamic 
limit, M, N--+ o0 with n/N= const. One then assumes (4) that the n numbers 
{p0} lie densely on a smooth curve C in the complex plane, which is sym- 
metric with respect to the imaginary axis and has endpoints Q and - Q * .  
Hence, the number ofp~ in any interval dp ~ along C is Np(p ~ dp ~ written 
in terms of a distribution function p(pO). Next one defines a function f(pO) 



164 Nolden 

such that df/dp~ ~ along C with f = 0  at the midpoint of C. The 
normalization of the distribution function can be expressed in terms o f f :  

f p(p~176 ( 1 - y ) = f ( Q ) - f ( - Q * )  (2.10) 
c N 2 

[From now on we shall use the vertical polarization per vertical bond y, 
which was defined by Eq. (1.7), instead of the discrete variable n.] In the 
new continuous variables p0 and qO, Eq. (2.9) can be written as 

2~f(p ~ - - / i n  H =pO _ fc O(P~ qO) p(qO) dqO (2.11) 

Note that the function f takes the role of 1l in (2.9). By differentiation with 
respect to p0 one obtains from (2.11 ) the following integral equation for the 
distribution function p(pO): 

80(pO, qO) 
2np(P~ + fc 81) ~ p(qO) dqO = 1 (2.12) 

The solution of this integral equation is the first crucial step to calculate 
the free energy from the fundamental equation (2.4) with A~ and AL from 
(2.6): 

1 -~F(h, y ) =  lira ~ l n Z ( h , n )  
M , N  ~ CO IVI ~[V 

lim ~ 1  max (ln AR(h, y), In AL(h, y ) ) ]  (2.13) 
N ~  cO [_N R,I~ J 

where we replace the summation by an integral over p(pO) dpO in the ther- 
modynamic limit. To achieve this goal one uses a further transformation 
from complex variables (p0, qO) to complex variables (cq/3) (see Table I). 
By that means the kernel of (2.12) is transformed to a difference kernel 
K(~- /~) ,  the structure of which in some cases allows for exact solution in 
closed form. A consequence of this method is that one has to use different 
transformations in the intervals A < - 1 ,  - 1  < A < 1, and 1 < A and for 
A = - 1 and A = 1. These transformations have been given. (< ~4) As we shall 
see later, this splitting of the A range (i.e., the temperature range) has a 
deeper physical reason, namely a qualitative change in the behavior of the 
model. 

In this paper we restrict ourselves to A < 1 because we are mainly 
interested in the applications of intrinsically antiferroelectric models where 
- oe < A < �89 (see above). Note, however, that the solution derived here for 
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- 1 < A < 1 contains also the high-temperature behavior of the intrinsically 
ferroelectric models (where 1 < A < 1). 

Under the transformation from (p0, qO) to (c~, fl) the integration path 
C is mapped onto a curve C' with endpoints ( - a +  ib) and ( a +  ib). The 
maximum range of the parameter a depends on A: 0 ~< a ~ 7r if A < - 1 and 
0 ~< a < oo if - 1 ~< A < 1 (see Table I). Next we define a distribution func- 
tion for the new variable e along the curve C' by R(c0 d~ = 2~p(p ~ @o. In 
terms of the new variables the integral equation (2.12) then takes the 
following form: 

+ 1 fa+ib R(~) G-~+~h K(a-fi) R(fl)dfi=~(a) (2.14) 

where the kernel is defined by 

dO(c~  - f l )  
(2.15) 

and the inhomogeneity by 

@o(a) 
~(~)- d~ (2.16) 

The normalization of the distribution function R(~) follows from Eq. 
(2.10), 

f,+,b R(e)de=rr(1- y) (2.17) 
a+ib 

Since R(e) is an analytic function of e, one can replace the integration path 
C' by one parallel to the real axis with endpoints ( - a +  ib) and ( a +  ib). 
In this case we can conclude from Eq. (2.17) that the real part of R(e) is 
a symmetric function of Re(c 0, while the imaginary part of R(c 0 is anti- 
symmetric in this variable: 

R ( - ~ * )  = R*(c0 

Furthermore, we can conclude from (2.17) that y must be a monotonically 
decreasing function of a. Besides (2.14), we obtain the following equations. 
Equation (2.11) is transformed to 

(2.18) 
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Here the function g(e) is defined as the transformed LHS of Eq. (2.11). The 
values of y and l n H  as functions of the parameters a and b can be 
calculated from the value of g(a+ib), which will be referred to as the 
generalized normalization, 

1 fa+ib O(a+ib-fl) R(fl)dfl g(a+ib)=p~163 a+ib 

= ~  [ 1 -  y(a, b) ] - / In  H(a, b) (2.19) 

For the free energy we obtain in terms of the new variables from (2.13) 

[ 1 1 fi0n'L(~) R(~)d0r (2.20) -IqF(h,y)=max _+~ (ln t /+ ln  H ) +  ~a+ib 
R,L "J - - a  + ib 

where the ( + )  sign and ~R correspond to In AR, while the ( - )  sign and 
~b L correspond to ln A L. The integrals occurring in Eqs. (2.14) and 
(2.18)-(2.20) can also be taken over a path parallel to the real axis between 
(-a+ib) and (a+ib) instead of C'. Complications arising from 
singularities of ~b R'L will be treated later. Explicit expressions for the trans- 
formation from pO to ~ as well as for the functions O, K, pO, 4, and (b R'L 
are given in Table I for the three cases - 1  <A < 1, A = - 1, and A < -- 1. 
Note that the free energy depends explicitly on the quantities 6, T, A, a, 
and b. 

Finally, we introduce the transformation u=~-ib (v=fl-ib) to 
obtain integrals running over the real axis with - a  ~< u ~< a. The transfor- 
med equations in terms of the variable u will be the starting point for the 
analytical solution described in Section 3 and for the numerical work./1~ 
After the transformation from ~ to u the functions pO, 4, g, etc., depend 
explicitly on the parameter b. To mark the difference we denote the func- 
tions of the new variable u, for example, by p~ b) [instead ofp~ etc. 
Further note that c~- fl = u - v  is a real number. Using this transformation 
from c~ to u, we obtain for the integral equation 

R(u,b)+l  SaK(u-v)R(v,b)dv=~(u,b)_ (2.21) 

for the generalized normalization 

g(a,b)=p~ - l  f~ O(a-v) R(v,b)dv 

7~ 

= ~  [1 - y(a, b)] - i l n  H(a, b) (2.22) 
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and for the free energy 

_+~ (ln t/+ In H) + ~-~ ~ ~R'L(u,b)R(u,b)du (2.23) ~ ~ f ~ h~ y ~ ~ m a x  
R , L  a 

Besides the free energy F(h, y), we are interested in its Legendre trans- 
forms F(x, y), (1.8), and F(h, v), (1.10). To obtain these quantities we have 
to calculate the y and h derivatives of F(h, y). Since F(h, y) depends 
implicitly on h and y through a and b, the differentiation has to be carried 
out by applying the chain rule. 

(2.24) 

, , + g  a ?-;Y h 

For simplicity of notation we shall use abbreviations 0~F for (3F/Oa)lb, 
etc., from now on. The derivatives OaF and 3bF can be obtained by 
differentiating Eq. (2.23) with respect to a and b, 

1 1 
-f l  OaF(h, y ) =  +~  Oaln H+~-~ [~"'L(a, b) R(a, b) 

if~ +~R'L(-a ,b)R(-a ,b)]+~ ~R'L(u,b) OaR(u,b)du 
- - a  

(2.25) 

-~bF(h ,y )  _+~b ln  H + l f ~  a = [ ~ R ' L ( U ,  b) ~bR(U, b) 

+ ~b~R'I~(u, b) R(u, b)] du (2.26) 

The derivatives of a and b with respect to h and y can be expressed through 
the derivatives of h and y with respect to a and b as follows: 

Oyb Ohb,] ~ayObh-Oby~,h -Oah ~ 

The derivatives of h and y with respect to a and b are easily obtained from 
the derivatives of g(a, b) [-Eq. (2.22)] with respect to a and b, 

rc 
Oag(a, b)=  -~O~y-  i Oaln H 

=R(a,b)- O(2a) R(-a,b)-}-~ O(a-v)~?~R(v,b)dv 
a 

(2.28) 
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7~ 
Ob g(a, b) = - -~ 0 b y - i Ob In H 

= i~(a, b)_l~j~ f~ O(a - v) ObR(v, b) dv (2.29) 
- - a  

To obtain Oag(a, b) in the form (2.28), Eqs. (2.16) and (2.14) have been 
used. 

For  calculating all these a and b derivatives we need the derivatives of 
R(u, b) with respect to a and b. These quantities can be obtained by 
differentiating the integral equation (2.21) with respect to a and b. This 
yields 

1 
OaR(u, b) + ~ ~ ]~ K(u - v) OaR(v , b) dv 

(1 

1 
- 2re [ K ( u - a )  R ( a , b ) + K ( u + a ) R ( - a , b ) ]  (2.30) 

1 S c?bR(u,b)+~-~ K ( u - v ) 3 b R ( v , b ) d v = 3 b ~ ( u , b )  (2.31) 
a 

These integral equations have the same structure as (2.21) and thus can be 
treated in the same way. This method for obtaining the derivatives ~?aR and 
~?bR has been introduced by Lieb and Wu (5) for the special case b = 0. It 
can be used to calculate the free energy F(h, y) and its Legendre transforms 
analytically for A < - 1  and a = r c  (see Section 3) and to compute these 
quantities numerically for all values of A provided that a is finite. A second 
analytically solvable (but rather trivial) case occurs for a = 0, i.e., y = 1. We 
will discuss this case in Section 5. 

3. ANALYTICAL R E S U L T S  FOR A <  --1 

Here we use the method sketched in Section 2 to calculate exact 
expressions for the free energies F(h, y), F(x, y), and F(h, v) for A < - 1 
and a = m  As a first step we solve the integral equation (2.21) and its 
derivatives with respect to a and b, (2.30) and (2.31), by Fourier analysis. 
Using these results, we calculate the parameters h(a, b), y(a, b), and F(h, y) 
as well as their a and b derivatives all for a = ~. Legendre transformation 
then gives F(x, y) and F(h, v). In this section we present the results. 
Technical details can be found in Appendices D and E. 

For  A < - 1 the kernel K ( u -  v) and the inhomogeneity ~(u, b) of the 
integral equation (2.21) both are 2~-periodic (see Table I). Therefore it is 
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possible to solve (2.21) by Fourier analysis, provided that a = ~z. Hence, we 
can expand the solution Ro(u, b) of (2.21) in a Fourier series: 

Ro(u, b)= 

where the coefficients k~ are defined by 

^ i n u  R~e (3.1) 

k ,  = -~ ~ du Ro(u, b)e ~" (3.2) 

Note that the Fourier coefficients /~n depend on the parameter  b. Expres- 
sions similar to (3.1) can of course be written down for the functions ~(u, b) 
and K ( u - v ) .  After a transformation z = e  iu (for n~>0) or z = e  -iu (for 
n <0) ,  the Fourier coefficients of K ( u - v )  and ~(u, b) can be calculated 
directly with the help of the residue theorem. We obtain 

k n = e 24 k.I (3.3) 

( n = e  ~ I,,t + b,, - 2 < b  <)~ (3.4) 

Consequently the Fourier coefficients of Ro(u, b) can be calculated as 

J•n 
~n ebn 

- ) ~ < b < 2  (3.5) 
l + / s  2 c o s h 2 n '  

By insertion of the coefficients (3.5) into (3.1), we can write the distribution 
function Ro(u, b) as 

1 @ cos n(u + ib) 
Ro(u, b ) = ~ +  Z, (3.6) 

n = 1 cosh n2 

Below we shall repeatedly need the values of Ro for u = rc and u = - ~ ,  
which follow directly from this result: 

1 
g0(~, b)= Ro(-~, b)=~ )n cosh bn (3.7) 

+ ~, ( - 1 cosh 2n 
n = l  

Note that the result (3.6) for Ro(u, b) has an extremely simple form: It is 
the straightforward analytical continuation of a result obtained by Yang 
and Yang (14) for the quantum Heisenberg chain, where b = 0. 

Next we calculate the dipole energy h and the polarization y from the 
generalized normalization (2.22) for a = re. We deal with the two terms on 
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the right of (2.22) separately: The function p0 (see Table I) for u = ~z can 
be written as 

i( +e p~ b)=rc+i In +~77)+bj  

The imaginary part of p~ b) is then expanded in a Taylor series. In the 
second contribution we express the function O in terms of a complex 
logarithm in order to obtain integrals of the form given in Appendix E. 
Using Appendix E, (E.2), with A = exp ( -22 ) ,  B =  exp(22), and C =  22, we 
obtain 

~z i ~ ( - 1 ) " ( 1 - e  2xn _ _  
2 , ,  = 1 r l  

sinh bn 
cosh 2n 

Combination of these two contributions yields the value of g(a, b) for 
a = ' K :  

g(rc, b)=~+i b + 2  ~ ( - l ) n s i n h b n ]  
~=1 n cT~shT~J 

(3.8) 

Comparing this result with Eq. (2.22), the generalized normalization, one 
can directly read off that y = 0, as expected (see Section 2), while 

:o ( - 1 ) "  sinh bn lnH=2flh= - b -  2 ~ (3.9) 
n = 1 F /  Gosh 2n 

Thus, h depends on 2 and on b. Recall that (for fixed 2) b can take all 
values in the interval - 2  < b < 2. Using an identity derived by Lieb and 
Wu, ~5) one can rewrite Eq. (3.9) in the following form: 

{ (c~189 ~ (-1)"e ZnXsinhbn} (3.10) 
l n H =  - 2  In \cosh  �89 _~- ~ 2 n=l n cosh 2n 

This expression for in H converges faster than the first one and is therefore 
better suited for numerical calculations. It is also possible to rewrite 
Eq. (3.9) in terms of the Jacobian elliptic function nd. (s) In this form it 
can easily be expanded for small values of 2. 

Using these results for R o and In H, we are now able to calculate the 
free energy F(h, y) from Eq. (2.23). The calculation is straightforward but 
rather technical. For  this reason we prefer to present the details in 
Appendix D. Here we simply give the results. First we observe that 
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-flF(h, y) is either equal to in A R or to In AL, whichever is largest. The 
crossover from In AR to In AL occurs at b = r 

-~F(h, y = 0) = max (In AR, In AL) 
R , L  

t lnA R for - 2 < b < r  o 

= l n A R = l n A  L for b = r  

[ lnA L for r  

One finds that, although both In A R and In A L have a kink at b = r the 
maximum of both (i.e, the free energy) is an analytical function of b 
(namely a constant) even at b = r 

e-;-n s i n h (2 -  r176 (3.11) -flF(h, y =  0) = ~ l n  ~/+~ (2-~bo) + 
n = l n cosh 2n 

The interpretation of the fact that F(h, y = 0) is constant as a function of 
b will be given at the end of this section. 

To calculate the Legendre transforms F(x, y) and F(h, v) [defined 
in Eqs. (1.8), (1.10)], we use the method sketched in Section 2. The 
derivatives of the distribution function (?aR)o (u, b) and ((~bR)o (U, b) can 
be obtained by Fourier analysis of, respectively, Eq. (2.30) or Eq. (2.31) for 
a = re. The procedure here is completely analogous to the solution of the 
integral equation (2.21) itself. The results are 

(OaR)~176 ~+n=o ~ (-1)~e-Xnc~ [ (3.12) 

with the Fourier coefficients 

( ~ R ) .  = - Ro(~, b ) ( -  1)" - -  
e ). In l  

2 cosh 2n 
(3.13) 

and 

sin n n(u + ib ) 
(abR)o (U, b) = - i 

n = 1 cosh 2n 
(3.14) 

with the Fourier coefficients 

(8~R)~ 
n e  bn 

2 cosh 2n - nRn (3.15) 
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Somewhat surprisingly, (~?bR)o is equal to the derivative with respect to b 
of Ro(u, b) given in Eq. (3.6). Hence the derivative with respect to b and the 
limit a--* zr can be interchanged. 

Using these results for (0,R)o and (3bR)o, we calculate the derivatives 
of y and In H with respect to a and b. This can be done as follows: Con- 
sider Eqs. (2.28) and (2.29) for a- -  ~. Note that the occurring integrals can 
be calculated with the help of Appendix E, (E.2), in the same way as in 
Eq. (2.22) for a = rr. By insertion of O(27c)= 2~ (see Table I), the Fourier 
series (3.1) for (0aR)0 (u, b) with coefficients (3.13), and R0(rc ) of (3.7) into 
(2.28), we obtain for O~g(a+ ib) 

0~, g(a + ib)[ . . . .  b = �89 b) (3.16) 

Thus, c~, In H = 0 for a = ~ and 

1 
0a Y = - - No( rE, b) (3.17) 

7C 

It can be shown that the derivative of y with respect to a is negative for all 
values of b, as expected (see Section 2). 

From Eq. (2.29) we obtain the derivatives with respect to b in the 
same manner, using now the Fourier series (3.1) with coefficients (3.4) for 
~(rc, b) and with coefficients (3.15) for (QbR)o and Appendix E, (E.2). The 
results are 0b y = 0 and 

0 b in H = - 2R0(~z, b) (3.18) 

The last result (3.18) shows that Ob In H is again simply the derivative with 
respect to b of in H, (3.9). 

The derivatives Oya, C~lnHa , Oyb, and ~?ln,b follow then immediately 
from (2.27): 

(~ya = Ro(n, b) 

c~l~.a=O 

r yb -- 0 

- 1  
~lnH b 

2Ro(rC, b) 

(3.19) 

The only missing ingredients needed for calculation of the Legendre 
transforms F(x, y) and F(h, v) are the derivatives of F(h, y) with respect to 
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a and b. These derivatives can be calculated analogously to the free energy 
F(h, y) itself. Details are given in Appendices D and E. The results are 

1R0(~, b ) I ~  (2 [qi0- b[) ~a(-[JF( h, Y))[b . . . .  ~z 

+ ,~+= 1 ( - 11" sinh [(2 - I~b~ - bl ) n] I n  cosh 2n (3.20) 

Ob(--flF( h, Y))lb . . . .  = 0  

We can now collect our results and calculate the Legendre trans- 
forms F(h, y) and F(h, v) of F(h, y). The polarization x(a=rc, b)= 
23lnU(-/~F(h, y)) is zero, as can easily be seen from the definition (1.9). 
Consequently, F ( x = 0 ,  y = 0 )  is equal to F(h, y = 0 )  in (3.11). The dipole 
energy v=  (1/2/7) In V is obtained from Eq. (1.11), 

( -1 )n  sinh[(2 - [~bo-bl)n] 
In V(a=~z, b)=2-[~bo-b [ + 2  

n - -  1 n cosh 2n 
(3.21) 

Note that In V has the same form as In H, (3.9), so that ( - l n  V) can also 
be written in the form (3.10) by replacement of b by (2-[+bo-b[).  Since 
y = 0 ,  the Legendre transform F(h, v) is also equal to F(h, y = 0 ) ,  (3.11). 
This concludes the calculation of the free energies F(x, y) and F(h, v). 

The result (3.21) represents the first-order term of the expansion of 
F(x, y) [or F(h, y)]  for small values of y. To obtain higher orders one 
would have to calculate higher derivatives with respect to a and b. These 
derivatives can in principle be obtained along the same lines as the first- 
order derivatives discussed above. Technically, putting b =0,  i.e., h = 0, 
represents a serious simplification, since in this case the derivatives with 
respect to b do not occur and, moreover, all imaginary parts which are 
usually present are equal to zero. For this special case the expansion of 
F(h, y) has been carried out up to third order by Lieb and Wu. (s) These 
authors find that the second-order term vanishes, whereas the third-order 
term contributes to F(h, y). We expect the same behavior for b ~ 0, for, in 
general, b = 0 is not a special point in the phase diagram, i.e., the physical 
situation for b = 0 and b 4:0 is precisely the same. A rigorous proof of this 
expectation is lacking. 

We emphasize that the final results have already been published 
almost without derivation by Sutherland et al. (4) The derivation of the 
results in ref. 4 could partly (for the special case b = 0 ,  or h = 0 )  be 
reconstructed by Lieb and Wu. (5) Our method, which is valid also for 
h +~ 0, is a generalization of the techniques developed by Lieb and Wu. The 
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main value of the derivation presented here is, first, that it is shown in 
detail how the results of ref. 4 can be obtained and, second, that in this 
manner these results are made more easily accessible for numerical analysis. 
Note that Eq. (3.2I) corrects a serious minus-sign error in formula (22) of 
ref. 4 for b > ~bo: as it stands, this equation is meaningless since it contains 
a divergent series. 

We add a few remarks. First recall that the calculation in this section 
is valid for all values of b in the interval - 2 < b < 2. Because of the sym- 
metry of the model (see Section 2) the free energy can be obtained in the 
entire (h, v) plane from the result in the region v ~> [hi. From Eqs. (3.9) and 
(3.21) one easily shows that this region corresponds to b values in the 
interval - �89 (2 - ~bo) ~< b ~< �89 (2 + ~bo), which is included in - 2  < b < 2. Next 
we comment on the shape and geometrical interpretation of the free 
energies F(x, y) and F(h, v). The exact calculation shows that F(x, y) has 
a conical singularity in the point (0, 0). This can be seen as follows. The x 
and y derivatives at this point, which are proportional to in H, (3.9), and 
In V, (3.21), respectively (see Section 2), are different for different values 
of be  [- �89 �89 ], i.e., for different directions in the (x, y) 
plane. This implies that one observes a jump in the derivative of F(x, y) if 
one crosses the origin along some straight line y = k x .  The symmetry 
F(x, y ) = F ( - x ,  - y )  then shows that (for a fixed value of k) the jump is 
symmetric with respect to the vertical, i.e., F axis. Thus, F(x, y) does not 
have a unique tangent plane at the point (0, 0). The conical singularity of 
F(x, y) manifests itself in the shape of F(h, v) as follows. The point 
(x, y ) =  (0, 0) corresponds to a region in the (h, v) plane the boundary of 
which varies with 2. For fixed 2 it is parametrized by b through Eqs. (3.9) 
and (3.21). For values of h and v within this region the function F(h, v) 
attains the constant value (3.11). The constancy of F(h, v) follows directly 
from the fact that its h and v derivatives (i.e., x and y) vanish. We will 
come back to this behavior in a subsequent article. (1~ 

4. A N A L Y T I C A L  RESULTS FOR - 1  < A < I  A N D  A =  --1 

Next we consider the free energies F(x, y) and F(h, v) as a function of 
the polarizations x and y or the dipole energies h and v. To obtain F(x, y) 
and F(h, v) for small values of their arguments, it suffices to solve the 
integral equation (2.14) asymptotically for large a. This will be done in 
several steps. First we solve (2.14) for a =  0% where the solution can be 
found by Fourier transformation. Results for large but finite a can then be 
obtained by expanding about the solution for a =  oo. The logic of this 
section is as follows: for given (a, b) we calculate the three parameters 
h(a, b), y(a, b), and F(h, y). Legendre transformations then give F(x, y) 

822/67/1-2-12 



176 Nolden 

and F(h, v). In this section we sketch the calculation and present the 
results. Technical details are contained in Appendices A-C. 

We start with the analytically soluble case a = oo. Here the integral 
equation (2.14) can be solved by Fourier transformation. For our purposes 
it is convenient to introduce a slightly modified definition of the Fourier 
transform, namely 

1 foo+ib d~e"~tR(~) (4.1) 

The inverse transform is then given by 

f 
o o  

R(e) = dt e i~k(t) (4.2) 
- - o o  

With these definitions, the solution of (2.14) for a = oo is easily found as 

R0((t)  - ~(t) (4.3) 
1 + / ~ ( t )  

The inverse transform R(c~) of R(t) can also be calculated explicitly. The 
results are given in Table II. 

We add several remarks. First, note that the analytical form of the 
solution changes at Ibl =/~ if - 1  < A < 1. This change corresponds to a 
transition from zero polarization ( y = 0 )  for Ibl < #  to maximal polariza- 
tion for all I bl > p. A similar transition occurs at ]bl = �89 if A = - 1. As a 
second remark, we observe that the solution in Table II, which is valid for 
complex ~, is the analytic continuation of the result for real c~ given by 
Yang and Yang. ~ 

The next step is the calculation of the polarization y and the dipole 
energy h from the (generalized) normalization equation (2.18). As may be 
seen from Eq. (2.19), y and h are determined by the real and imaginary 
parts of g(oo + ib), respectively. From (2.18) it is clear that g(oo + ib) can 
be expressed in terms ofp~ + ib), O(oo), and/~(0). These quantities are 
given in Table III for the various values of A. 

Using the results of Table III, one finds that g(oo + ib) = rt/2 both for 
- 1  <A < 1 and A = - 1, so that [see Eq. (2.19)] y = 0  and h = 0 .  The free 
energy F ( h = 0 ,  y = 0 )  can now be calculated from Eq. (2.20), where 
q=exp(f l6)  [see Eq. (1.2)]. As explained in Section 1, F(h, y) is deter- 
mined by the right (AR) or left (AL) part of the maximal eigenvalue of the 
transfer matrix, depending on which is largest. The crossover from AR to 
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Table II. Explicit Expressions for the Functions K ( a - ~ ) ,  ~(a), 
and R0(g ) and Their Fourier Transforms for - 1  < h < l  and ~ =  - 1  

- - l < 3 < 1  A =  --1 

sin 2# 2 
K(~ - fl) = 

cosh(~ - fl) - cos 2p 1 + (a - fi)2 

/((t) = sinh [(~ - 2/~)t] e - I t  
sinh(z~t) 

sin p 4 ~(~) = 
cosh ct -- cos p 1 + 4~ 2 

{ s i n h [ ( ~  - #) t]  
~ ( t )=  sinh(Tct) , Ibl <,u ~e_ltl/2 ' 

0, Ibl > / l  (0 ,  

Ibl <A 
Ib[>�89 

Ro(~)= 
cosh[(~/2U)a ], Ibl < ~  cosh(na) '  

o, I b l > p  O, 

Ibt < ~  

Phi > ~  

ko(l)= 
{1 {, 2 cosh(,ut--------)' ]b] </1 2 cosh(t/2-----------)' 

0, [bt># 0, 

Ibl<~ 

!hi>�89 

Table Ill. Explicit Results for the 
Asymptot ic Values of pO and e and 

for the Fourier Transform/~o(0) 

- I < A < I  A =  - i  

p ~  n - t ~  
0 (  ~ ) r e - 2 #  7~ 
ko(O) �89 �89 
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A L by definition takes place at b=~bo (see Table I), where the function 
q~(c~) has a singularity. One finds 

- f i F ( h  =0,  y = O )  

'1 1 ~+/b ~ ( ~ ) R o ( ~ ) d c ~  for -bo<b~<~b o = 21n ~ +~f-~~ (4.4) 

-~ln + l f ~ + i b  q~L(o:)Ro(~176 for ~bo~<b<b o 
�9 t /  2 n  ~ + ib 

Here b o = p  if - I < A < I  and bo=�89 for A = - I .  For :~ we use the 
parametrization ~ = u + ib with u and b real. The integrals in (4.4) can be 
calculated using the residue theorem. Details can be found in Appendices 
A and B, respectively. 

The resulting expressions for F(h = 0, y = 0) are 

-/~F(h = 0, y=0) 
=  coshucos    < 

1 In r/+ In \ co~hu---~os 7o J cosh(nu/2#) du, 2 /.t _ 

- 1 < a < 1  (4.5) 

- f iF (h  = 0, y = 0 )  

= ~ l n  ( V ( l + l / Z ( t l + l ) ) F ( 1 / Z - l / Z ( q + l ) ) ~  
t /+ In \V(1/2 + 1/2(t/+ 1)) F(1 - 1/2(i/+ 1))J' 

A = - 1 (4.6) 

Note that F (h=0 ,  y = 0 )  in (4.5) and (4.6) does not depend on the 
parameter b. The physical explanation for this result will become clear 
soon. To our knowledge the integral occurring in (4.5) cannot be expressed 
in a simple way in terms of elementary functions. Note that (4.5) reduces 
to (4.6) in the limit A - - + -  1 from above. Similarly, one finds that the 
previous result (3.11) reduces to (4.6) in the limit A --+ - 1 from below. 

To calculate the Legendre transforms F(x, y)  and F(h, v) [defined in 
Eqs. (1.8), (1.10)] we need an expansion of F(h, y)  in the neighborhood of 
(h, y ) =  (0, 0). Since we found above that y = 0  and h = 0  for a =  0% it is 
clear that small h and y correspond to large but finite values of a. An 
asymptotic study of F(h, y)  for large a (or small h, y) is carried out in 
Appendix C. The method used there is a generalization of the techniques 
developed by Yang and Yang for the XXZ-Heisenberg chain. (14) The 
result is 

- f lF (h ,  y)  = - BF(h = O, y = O) 

cos(s~bo) 1 . 
4r [r2y z - (ln H) 2 ] q- ~ sm(s~bo) y In H (4.7) 
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where s = 7c/2# and r = rc - # if - 1 < A < 1 and s = r = z~ for A = - 1. F r o m  
this result it directly follows (see Appendix  C) that  the point  (h, y)  = (0, 0) 
corresponds  to x = 0  and v = 0 .  As a consequence,  one has that  all 
three free energies F(h = O, y = 0), F(x = 0, y = 0), and F(h = 0, v = 0) are 
identical and equal  to (4.5), (4.6). 

The expansions of F(x, y) for small x and y. of F(h, v) for small h and 
\ . 

v can also easily be calculated from (4.7). We obta in  

-~g(x, y ) =  - ~ F ( x  = 0, y=O)  
4 cos(s~bo) 

i x  2 + y2 _ 2xy sin(sr 

(4.8) 

and 

-BF(h,  v ) =  - f l F ( h  = O, v = O )  

1 
+ [(In V) 2 + (ln H)  2 + 2 In Vln  H sin(sr 

4r cos(s~bo) 

(4.9) 

Par t  of  these results can also be found in ref. 4, albeit a lmost  wi thout  
derivation. The  explicit expression (4.6) for F ( h = 0 ,  y = 0 )  in the case 
A = - 1 is a new result for b r 0. Lieb and Wu (5) give the same expression 
for b = 0 .  Using ref. 15, formula  44.8.4, it can be shown that  this result is 
equivalent  to Eq. (17) derived by Suther land et al. (4~ For  numerical  
appl icat ions Eq. (4.6) has great  advantages  over  the rather  slowly 
converging series representat ion of ref. 4. F r o m  (4.7)-(4.9) we see that  all 
three free energies have the form of a pa rabo lo id  for small pa ramete rs  
(h, y, x, v). The result differs marked ly  f rom the behavior  of  the free 
energies found for A < - 1 (see above).  

5. A N A L Y T I C A L  R E S U L T S  FOR a = 0  A N D  ALL V A L U E S  OF Z~ 

Finally, we show which results can be obta ined analytically for a = 0. 
We use the me thod  explained in the last par t  of Section 2 wi thout  
specifying the functions ~, K, pO, O, and ~b R'~, which are different for 
A < - 1, A = - 1, and - 1 < A < 1 (see Table  I). For  b # ~bo the integrands 
in Eqs. (2.21)-(2.23) are analytical  functions, so that  the integrals in these 
equat ions vanish for a = 0 .  We obtain  from Eq. (2.21) for the distr ibution 
function 

R(u, b)=~(u, b) 
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from the generalized normalization (2.22), y =  1, and l n H =  
- Ira(p~ b)); and for the free energy F(h, y), provided that b ~ ~b o (i.e., 
in H #  - I n  r/), 

�9 f � 8 9  l n H >  - l n r /  (5.1) 
-flF(h'y=l)=~-�89 l n H <  - l n t /  

The derivatives with respect to a and b of these quantities can be calculated 
in the same way from Eqs. (2.28), (2.29), and (2.25). By inserting the results 
into Eqs. (2.27) and (2.24) we obtain for the polarization x, with the help 
of relation (1.9), the following result: 

~ -+1, l n H >  - l n r /  
x = ( - 1 ,  l n H <  --lnr/ 

and for the dipole energy v (= �89 V), with the help of relation (1.11), 

In vR=(pR(0, b)=ln 2 A - q - H  H>q 1 
I n  V -  = 1 - - r / H  ' 

lnVL=~bL(0, b ) = l n  2A-~I l--H-I 
1-~/  1H-1 ' H < ~  

(5.2) 

For the last identity we used Eqs. (2.13) and (2.6) to give expressions for 
the functions ~R and ~L in terms of the old variables pO without specifying 
in which interval A lies. The Legendre transforms of F(h, y) then follow 
immediately from Eqs. (1.8) and (1.10), respectively. The results are 

and 

~F(x= 1, y =  1)= -�89 
F ( x ' y = l ) = ( F ( x = - - l , y = l )  �89 

h> -�89 
h< -�89 (5.3) 

F(h,v)={-+ �89 
�89 

h > - �89 and v > v R 
h <  - �89 and v>v L (5.4) 

These results can be explained as follows. For y = 1 there are two possible 
ordered states of the model, one with x -  I, where the model is completely 
frozen in at vertex 1, and one with x = - 1 ,  where it is completely frozen 
in at vertex 4. For each of these states the free energy per lattice site F(x, y) 
naturally takes the constant value of the corresponding vertex energy [see 
Eqs. (5.3) and (1.1)]. The two points (x,y,F(x,y))=(+l,l ,  N�89 
correspond to the two planar parts of F(h, v) in (5.4). Their boundaries 
(h, v g,r) in the (h, v) plane can be obtained from the result (5.2). These 
boundaries give the critical strengths of the external horizontal and vertical 



The Asymmetric Six-Vertex Model 181 

fields needed to force the intrinsically antiferroelectric models into a state 
of maximal polarization (or the intrinsically ferroelectric models into a 
state where the polarization is not frozen in at its maximal value). These 
boundaries are of course temperature dependent. For increasing tem- 
perature they are shifted to greater field strengths. Because of the symmetry 
of the models the analogous behavior occurs for y = - 1  and reversed 
electric fields. Examples of phase diagrams for an intrinsically antiferro- 
electric model will be shown elsewhere. <1~ A phase diagram for an intrinsi- 
cally ferroelectric model can be found in ref. 5. 

The result (5.2) represents the first-order term of the expansion of 
F(x, y) for small values of (1 - y) and h r - �89 For the sake of complete- 
ness we mention here that this expansion can be extended to higher orders 
(see ref. 5 for b = 0, ref. 8 for b v a 0, and ref. 16 for a special model). All 
authors find that the next nonzero contribution is not of second order in 
( 1 -  y) as one might expect, but of third order. 

For  h = - �89 (i.e., b = ~bo) the integrands in Eqs. (2.23) and (2.25) have 
logarithmic singularities. Thus the integrals have to be treated more 
carefully. Sutherland et al. (4~ give an expansion near y =  1 for x r  + 1 
containing also the case x =  0 (i.e., h = - �89 From their result it follows 
immediately that l i m y ~ F ( x = 0 ,  y ) = 0 ,  while v and F(h,v) diverge 
logarithmically. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

We start with a summary. In this paper we presented the detailed 
analytical solution of the asymmetric six-vertex model. The concepts which 
are central to the method of solution of the six-vertex model, such as the 
transfer matrix method and the Bethe Ansatz, were briefly discussed in Sec- 
tion 2. It was shown how a closed set of equations for the free energy can 
be obtained. In Section 3 we considered the low-temperature phase of 
intrinsically antiferroelectric models (A < - 1 )  and showed how the free 
energy F(h, y) could be calculated for general fields h in the limit of zero 
polarization (y ~ 0). We also calculated the Legendre transforms F(h, v) 
and F(x, y) in this limit. As a byproduct, one finds that F(x, y) has a 
conical singularity in (x, y ) = ( 0 ,  0), corresponding to a finite region 
surrounding the origin in the (h, v) plane. Similarly, the free energy for the 
high-temperature phase of antiferroelectric ( - 1  < A < �89 or ferroelectric 
(�89 < 1) models is discussed in Section 4. One finds that, in this phase, 
the free energy has a parabolic form near (x, y) = (0, 0), implying that the 
finite region in the (h, v) plane, present for A < - 1, has shrunk to a single 
point (0, 0) for - 1 < A < 1. Finally, in Section 5, we studied the free energy 
and its Legendre transforms for the special case of maximal polarization. 
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A particular feature of the six-vertex model is that the transition to the 
state of maximal polarization can occur already at finite field strengths 
(h, v). 

As stated in the introduction, the main motivation for this work is that 
the BCSOS model, which is a microscopic model for the equilibrium shape 
of bcc crystals, (6) can be mapped exactly onto the asymmetric six-vertex 
model. Therefore, to study the BCSOS model one has to understand 
the six-vertex model first. A detailed discussion of the relation between the 
results presented in this paper and the crystal shapes described by the 
BCSOS model will be given elsewhere/1~ However, it is readily possible to 
summarize the basic relations between them (6' 7): The free energy F(h, v) in 
the six-vertex model is interpreted in the BCSOS model as the height of the 
crystal surface above some (0, 0, 1) reference plane. For A < - 1, the finite 
region in the (h, v) plane, Corresponding to the conical singularity in 
F(x, y), can be interpreted as the occurrence of a (0, 0, 1) facet in the 
BCSOS model at sufficiently low temperatures ( T <  T~). The absence of 
the conical singularity for A > -  1 implies that the (0, 0, 1) facet has 
vanished, i.e., that the (0, 0, 1) face of the crystal has become rough. The 
transition temperature TR at which the facet vanishes can thus be identified 
as the roughening temperature of that particular facet. Furthermore, the 
states of maximal polarization, discussed in Section 5, correspond to the 
(0, 1, 1) facets in the BCSOS crystal. These facets are present at all 
temperatures, i.e., for all values of the parameter A. 

From this brief discussion of the relation between the six-vertex model 
and the BCSOS model it will be clear that many interesting details of 
the equilibrium crystal shape are still hidden in the equations derived in 
Section 2 that determine the free energy F(x, y) and hence its Legendre 
transform F(h, v). Some properties of the equilibrium crystal can still be 
calculated analytically, but many others require the numerical calculation 
of F(h, v). Details concerning the numerical and analytical study of the 
resulting equilibrium crystal shapes are given elsewhere. (1~ 

APPENDIX  A. DETAILS CONCERNING THE ANALYT ICAL  
SOLUTION ( a = o o )  FOR - - 1 < A < 1  

We distinguish the ca se s - /~  < b ~< ~bo and ~bo ~< b < #, which 
correspond, respectively, to the situation where A R or A L is largest. 

A.1. -IJ<b~<~o (AR~>A L) 

In this case we have to calculate the integral 
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where q~R(C~) and R0(a) are given in Tables I and II, respectively. From the 
explicit expressions for ~bR(c0 it is clear that the function qSR has 
logarithmic singularities on the imaginary axis at ib= i ( -2#+~bo+k2~)  
and ib = i(~b o + k27r), and the distribution function Ro(c0 has poles on the 
imaginary axis at ib=ip(1 + 2 k )  ( k e Z ) .  The complex ~ plane is sketched 
in Fig. 4. Here we indicate the branch cuts due to the singularities in q5 R 
as well as the contour  of integration chosen to calculate I R in the case 
b < 0. For  b >~ 0 we choose a contour  in the upper  half-plane. Note  that 
the closed contour  does not  contain any poles. We consider the varibus 
parts of the contour  in Fig. 4 separately. For  A--* oo the integrals 
$5~ +~b qsR(c~) Ro(~) d~ and SA+ib qsR(c~)Ro(c 0 d~ are equal to zero. [-Recall 
that  R0(c0 falls off exponentially for IRe(c01 ~ oe.] Thus we obtain for 

- / ~ < b < q t  o 

I R = qhr~(u) Ro(u) du 

1 oo (cos_h u _-_ cos(2# - ~bo!) r~/2# . 

= 2 f -  oo In \ cosh u - cos ~b o ] c o s h ~ / 2 # )  au 
(A.2) 

which leads to the integral representation of  F(h = 0, y = 0) in (4.5). 

-A ] 
-It" 

t% 

A < 

~b > 

t(-21a+~o) 

- I t  

Fig. 4. Logarithmic singularities, branch cuts, and contour of integration in the complex 
plane for b < 0. The values of the argument of the complex logarithm are indicated on either 

side of the two cuts. 
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A.2. ~ o < b < l J  (AL> 'A R) 

Here we have to calculate the integral 

IL ~-- f~_+ ib+ ib tT]gL(~) Ro(~) d~ (A.3) 

with ~L given in Table I and R o given in Table II. In this case the 
function ~L has logarithmic singularities on the imaginary axis at 
ib = i(2# + ~bo + k2z~) and ib = i(~b 0 + k2~z) (k 6 Z). The corresponding 
branch cuts and the chosen contour of integration are indicated in Fig. 5. 
The closed contour does not surround any poles. Hence the integral over 
the chosen contour is equal to zero. For A ~ Go and e-> 0 the only non- 
vanishing contributions a r e  I L ,  the integrals over the positive and negative 
real axis, over C1 and over C2 (see Fig. 5). Combining all results, one finds 

1 ~ o~ In (cosh u--__cos(2/~ + ~bo)' ~ rt/2# I L du 
J-  ~ \ cosh u - cos ~-o J cosh[(rc/Z/Ou3 

(c~176 ~ (A.4) 
- 2z In \1 + sin(rt~bo/2#)J 

The second term arises from the contribution due to C1 and C2. For physi- 
cal reasons (see below) (4.4) must lead to the same result for the cases R 
and L, and thus I L must be equal to (I R + 2re in t/). This has been checked 
only numerically. 

-A 

-Tt 

> 

J~ 

i(2.§ 
[b 

i% 
C~_E i~ c2 < 

A 

Fig. 5. Logarithmic singularities, branch cuts and contour of integration in the complex 
plane for ~b 0 < b < #. The values of the argument  of the complex logarithm are indicated on 

each side of the two cuts. 
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APPENDIX  B. DETAILS C O N C E R N I N G  THE ANALYT ICAL  
SOLUTION ( a = o o )  FOR A =  - 1  

The case A = -- 1 can be handled in the same manner  as - l < A < t. 
Here  we distinguish the pa rame te r  intervals - �89 < b ~< r and r < b < �89 

B.1. - �89 (AR~>A L) 
The calculations proceed a long the same lines as those sketched in 

Appendix A.1. Singularities of (pa are now ib = iOo and ib = i( - 1 + r on 
the imaginary  axis; the distr ibution function Ro(~) has poles at ib = i(�89 + k) 
( k e Z )  on the imaginary  axis. Apar t  f rom the different values of the 
singularities, the si tuat ion in the complex ct plane is the same as in Fig. 4. 
Ins tead of the previous result (A.2), one obtains  in this case ( c~- -u+  ib) 

f ~  + ib f I R = q~R(~) Ro(~ ) do~ = J R ( u )  Ro(u ) du 
oo + ib --co 

1 In (1 - r176 + u2.~ ~r du 
2 - ~ r z + u 2 J cosh ~cu 

= 2~z In ( F ( ( 5  - 2~bo)/4 ) F((1 + 2r 
\ F ( ( 3  -- 2r ) F((3 + 2r  

(B.1) 

In the last step we used ref. 17, formula  4.373.1. By inserting (B.1) in com- 
binat ion with the relation between r and ~/(see Table  I) into Eq. (4.4) for 
- b o < b ~ < r  for the free energy F(h, y), one obtains  the result given in 
Eq. (4.6). 

B.2. ~o<b<�89 (AL>A R) 

The calculations are ana logous  to those presented in Appendix  A.2. 
The singularities of ~C are now given by ib = i(1 + r and ib =ir both  
on the imaginary  axis. Here,  apar t  f rom the values of  the singularities, 
the si tuat ion in the complex ~ plane is the same as in Fig. 5. Ins tead of 
Eq. (A.4), we find in this case 

L ~ ~176 + ib 

( F ( ( 5 + 2 r 1 7 6 1 7 6  1 + sin rCr (B.2) 
= 2~ In \ F ( ( 3  + 2~bo)/4) F((3  + 2r  
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The second term arises from the contribution due to C1 and C 2 (see Fig. 5). 
Using the relation between ~b o and r/ (Table I) and ref. 18, formulas 6.1.15 
and 6.1.17, we can write this result as 

[- IF( (5  - 2~bo)/4 ) r ( (1  + 2q~o)/4)'~ . ] 
I L =  2~ L m ~F---~-- 2~bo)/4 ) F((3 ~ )  + In r/ (B.3) 

Insertion of (B.3) into Eq. (4.4) for - b o <  b ~<~bo yields precisely the same 
result for the free energy as was found in Appendix B.1. This was to be 
expected since both results describe the same physical situation (see above). 

APPENDIX  C. CALCULATION OF F(h, y) NEAR (h, y) = (0, 0) 

The expression (4.7) for the free energy F(h, y) for small h and y [i.e., 
for large but finite values of a in (2.20)] is obtained as follows. In Section 
C.1 we show that h, y, and F(h, y) can be expressed in terms of integrals 
over the tail {[ul > a} of the distribution function R(u + ib). Since R falls 
off very rapidly for large u, this representation is extremely well suited for 
the calculation of h, y, and F(h, y) if a is large. Next, in Section C.2, we 
calculate asymptotic expressions for R(u + ib), valid for ]u[ > a and a ~ ~ .  
The results of Sections C.1 and C.2 are then combined in Section C.3 
to calculate explicit expressions for F(h, y), valid if h and y are small. 
Legendre transformation finally yields the related free energies F(x, y) and 
F(h, v). 

C.1. Tail Formalism for h, y, and F(h, y) 

Consider the integral equation (2.14) for R(~) (~ = u+ ib). Although 
R(e) is required only on the finite interval - a  ~< u <~ a, it is evident that the 
functions K(e - fl) and r are well-defined for all cr with - c~ < u < ~ .  
Thus we can regard (2.14) as defining R(u + ib) on the entire real u axis. 
Equation (2.14) can then be rewritten as an integral equation on the real 
u axis, using a projection operator B defined by 

BR(c~)=~R(c~) for [ul<~a (c.1) lo for a <  lul < oo 

In terms of B one finds from (2.14) that 

~" 1 f oo s- ib 
R ( ~ )  = ~ ( ~ )  - -  ~ oo + ib K ( ~  - -  f l )  B R ( f l )  r (c.2) 
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For  simplicity we use the following abbreviation for Eq. (C.2): 

R = ~ - KBR (C.3) 

For  a = oo the solution of this equation can then be cast into the form 

R o = B R o = ( I + K )  1 ~ = (1 + J ) ~  (C.4) 

where we introduced the resolvent operator J. Equation (C.3) can now be 
written as 

(1 + K ) R  = r + K(1 - B ) R  (C.5) 

and with the definition J = - (1 + K ) -  1 K as 

R =  (1 + K )  -1 r  (C.6) 

The first term on the right is immediately identified as R o [see Eq. (C.4)], 
so that (C.6) reduces to 

R = Ro - J ( 1  - B )R  (C.7) 

or, translated back to the integral notation, 

1 f~+ ,b  R(~) = Ro(~ ) - 2--~ a+ib J(o~ -- fl) R(fl) dfl 

1 
f a+ib J(c~- f l )  R(fi)d[3 (C.8) 

2re ~ + ib 

This is an integral equation for R(7) with Re(c 0 = u outside the interval 
( -  a, a). Next we show that the polarization y and the dipole energy h can 
be expressed in terms of integrals over the tail of the distribution function 
R(~). This result follows directly by integrating Eq. (C.2) over the interval 
a ~ u ~  oo: 

~5+bibdo~R(o~) f~a+b ib l ~ ~ + / b  f~176 b = d c ~ ( ~ ) - ~ - ~ a + ,  b d~ d f l K ( ~ z - f l )  BR(f l )  

= p O ( ~  + ib) - p ~  + ib) 

1 f ~ + i b  d f l O ( o o + i b - f l )  BR(f l)  
2~ oo + ib 

| eoc +ib 
+ ~ J - ~ + ib dfl O(a + ib - [3) BR(fl)  (C.9) 
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In the last step we used the definition (2.16) o f p  ~ as an integral over the 
function ~ and the relation (2.15) between K and O. Combination of the 
second and fourth terms on the right of (C.9) gives -g(a+ib), as can 
be seen from Eq. (2.18). The first term on the right, p~ and 
O(oo+ib-t3)=O(oo) occurring in the fourth term are known from 
Table III. Combining all results, one finds 

f2: ' f::2 deR(e)=p~ dflR(fl) 

=p~ + ib) y + i ln H (C.10) 

In the derivation of (C.10) we used definition (2.19) of y and In H (=2flh) 
in terms of g(a+ib) and the normalization (2.17) of R(e). Recall that 
p~ + ib) = rc for A = - 1 and p~ + ib) = r c - p  if - 1  <A < 1. The free 
energy F(h, y) can be expressed in terms of integrals over the tail of R(e), 
too. To see this, note that the definition (2.20) of F(h, y) can be written as 

1 1 foo+ib 
--flF(h, y ) =  _+~ (ln tl + In H)+~-~ ~ ~ + ~b de ~(e)  BR(e) (C.11) 

where the ( + )  sign corresponds to q~ = ~b l~ and the ( ) sign to q5 = eL  
(see Table I). The function BR occurring in the integral on the right 
satisfies the integral equation 

BR=Ro- (1 + K )  -1 ( 1 - B ) R  (C.12) 

This follows directly from the integral equation (C.7) for R by writing 
(1 + K )  -1 K= 1 - (1 + K) -1 and reshuffling the various terms. Insertion of 
(C.12) into (C.11) yields 

1 
-~F(h, y ) =  - /~F(h = 0, y = 0 ) + ~ l n  H 

1 fo~+ib 
2- j _ ~ + ~ b d e r  - ~ ( 1 - B ) R ] ( e )  (C.!3) 

Note that the integral in the right-hand side runs only over the tail 
{ [ul > a} of the distribution function R(e). 

C.2. Asymptot ic  Expansion of the Distr ibut ion Function R ( a )  
for Large a 

To obtain an asymptotic expansion for R(e) in the limit a ~ 0% we 
start from the integral equation (C.8) with Re(a) outside the interval 
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( - a ,  a). Using the symmetry R ( - ~ * ) =  R*(~), discussed in Section 2, we 
rewrite (C.8) in the following way: 

i f  ~+'b R ( o ~ )  = Ro(o~  ) - -  27~ a + ib J(o~ - -  [~) R ( f l )  d f l  

1 
~ + ,b J(e + fl*) R*(fl) dfl (C.14) 

2n "~ a + ib 

Next we transform (e, fl) to new variables (a, r), defined by 

a = a l  + ib=_c~-a 

z = r l  + i b - f i - a  
(c.15) 

In terms of the new distribution function S ( a ) - R ( a + a ) = R ( e ) ,  Eq. 
(C.14) reads 

S ( a ) + l  f i b + i b j ( a - - z ) S ( r ) d z  

= Ro(a + a ) -  J(a + r* + 2a) S*(r) dr (C.16) 
1 

We estimate the order of magnitude (as a function of the parameter  a) of 
the terms in the RHS of (C.16). The first term, R o ( a + a  ), follows from 
Table II  as Ro(a + a ) ~  2s~e sol for a ~ ~ ,  where we defined ~ = e  -s(a+ib) 
with s = n/2/~ if - 1 < A < 1 and s = n for A = -- 1. The second term on the 
right is much smaller than the LHS of (C.16), since J(a) vanishes for 
a ~ oo, as we shall see below. Hence the second term is also much smaller 
than the first term on the right, and can therefore be considered as a small 
perturbation. 

Since the integral on the right in (C.16) is small compared to all other 
terms, we can write S(a) as 

S ( a ) =  ~ Sk(a ) (C.17) 
k = O  

where the leading term So(a) satisfies the integral equation 

1 f i ~ + i b j ( a _ r ) S o ( z ) d z = R o ( a + a )  (C.18a) So(a) + ~ 

while the higher orders are determined by 

1 f oo +ib 
&(if) + ~ ~,~ J ( a  -- r) &(Z) dr 

_ _ - 1 ~ +ib J(a + r* + 2a) S~_l(r)  dr (C.18b) 
2n Jib 
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A formal solution of the integral equation (C.18) for k = 0 can be obtained 
by expanding Ro(a+a ) and S0(a) in terms of the small parameter 

~ e - - S ( a +  ib). 

Ro(a+a ) =2s  ~ ( - 1 ) "  ~2"+1e s(Zn+l)~ (C.19a) 
n - - 0  

So(a)=Zs ~ ( - 1 ) " ( 2 " + l T n ( a l )  (C.19b) 
n = O  

The coefficients T,(al) of So(a) are real functions of the real variable a~ 
and satisfy 

'fo T , ( a l ) + ~  J ( a l - z l )  T , (z l )dz l=e (2n+1)~, (C.20) 

This is an inhomogeneous Wiener Hopf  equation. 
Fortunately, Eq. (C.20) occurs in the literature. This integral equation 

was studied with the same kernel J(a  1 --ti) in the context of the XXZ- 
Heisenberg chain by Yang and Yang, (14) so that we can simply take over 
their results here. In particular, it is shown in ref. 14 that the integral kernel 
vanishes asymptotically for large values of its argument, as was anticipated 
above. One finds that J(a) oc a -z for a ~ oo if A = - 1 and J(a) oc e 21ra 
if --1 < A < 1. This justifies the perturbation expansion (C.17), (C.18). The 
proof that the corrections due to $1 + $2 + " -  are indeed negligibly small 
can also be found in ref. 14. The basic result in ref. 14 is the expansion of 
the ground-state energy in the Heisenberg model for small values of the 
magnetization. Below (see Appendix C.3) we shall use this result to obtain 
an expansion of the free energy F(h, y) in the six-vertex model for small h 
and y. 

C.3. Explicit Results for the Free Energies 
F(h, y), F(x, y), and F(h, v) 

By combining the results from Sections C.1 and C.2 we are now able 
to calculate explicit asymptotic expressions for the polarization y, the 
dipole energy h, and the free energy F(h, y). Legendre transformation then 
gives F(x, y) and F(h, v). 

In Section C.1 we showed that y and h, respectively, can be obtained 
from the real and imaginary parts of the integral over the tail of the dis- 
tribution function [see Eq. (C.10)]. As was argued in Section C.2, the dis- 
tribution function R(c0-= S(a) can be written as a sum, S ( a ) = ~ k  Sk(a), 
with Sk+l ~ Sk for a--* oo. The leading contribution to the LHS of (C.10) 
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is therefore obtained by neglecting corrections due to St + $2 + . .- ,  i.e., by 
taking only So into account: 

oo + ib  

~~176 ib R(~) d ~  f So(a) d~ ( a ~  oo ) 
"J a + ib  ib 

=2s  ( - 1 ) ~  2"+' da~Tn(al) 
n = 0  

=2s  ~ ( -1)n~z"+lTn(0)  (C.21) 
n = 0  

In the last step we introduced T,(o) ,  which is in general related to the 
coefficients Tn(a) in the series expansion (C.19b) of So(a) by 

poO 

7"n(O)) ~ Jo dal ei~~ ) (C.22) 

Since the perturbation $1 + $2 + ... introduces corrections of the form ~3 
if - 1 < A < 1, or (~/ln ~) if A = - 1 (see ref. 14), one can neglect all higher 
orders (n > 0 ) i n  (C.21). One then obtains [-see (C.10)] 

r y + i l n U ~ 2 s T o ( O ) ~  ( a ~ o o )  (C.23) 

with the abbreviation r =p~ + ib), or, using the definition of ~, 

2 s ~  
y,,~__ To(O)e sa cos(sb) (a ~ oo) (C.24a) 

r 

In H ~  - 2ST"o(0)e sa sin(sb) (a -~ ~ )  (C.24b) 

Note that In H ~  - ry tan(sb) is of the same order of magnitude as y for 
a ~ ~ ,  or y ~ 0. By inverting the relation (C.23) between ~ and (y, In H), 
one obtains 

~=(ry+i lnH) /2sTo(O)+o(y )  ( a ~ o o )  (C.25) 

Thus, ~ is also of order y (or In H) for a-~ 0% or y ~ 0 .  
Next we address the calculation of the free energy F(h, y) for small h 

and y. The method used below is a generalization to models with b ~ 0 of 
a method invented for b = 0  by Lieb and Wu. (s) As can be seen from 
Eq. (C.13), F(h, y) is expressed in terms of an integral over the tail of R(a). 
It is convenient to rewrite Eq. (C.13) in the form 

1 1 
- f lF(h,  y) = - flF(O, 0) + ~ In H -  ~ ID (r 

822/67/1-2-13 
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where we defined the integral ID. It is clear from Eq. (C.13) that I D has two 
different forms for r and q~L. For simplicity, we drop the indices R or L 
in the following formal derivation. In operator notation, I D can be written 
a s  

ID= D[(1 -- B)R]  (C.27) 

where the functional D is defined by 

f 
~ + i b  

D [ f ]  = d~ qs(~)[(1 + K )  -1 .f](ct) 
--  cc~ + ib 

(c.28) 

The linear functional D can be expressed in terms of a function D(a) as 
follows: 

f oo + ib 
D [ f ]  = dc~ D(~) f (~ )  (C.29) 

~v + ib 

The function D(~) will be calculated next. From this result the asymptotic 
expansion for F(h, v) will follow immediately. 

Consider the definition (C.28) of D. In an obvious operator notation, 
(C.28) can be written as D =  q~(1 + K )  -1, or, because of the symmetry of 
(1 + K) ~, (1 + K) D = ~, or equivalently 

1 r ~  +ib 
D(~) + -~ j_ oo + ib dfi K(a - fl) D(fl) = qs(a) (C.30) 

Thus, D(~) satisfies an integral equation of the same form as R(a) in (2.14). 
Note, however, that the inhomogeneity is different. The form of Eq. (C.30) 
clearly suggests a solution by Fourier transformation, but unfortunately the 
Fourier transform (4.1) of the inhomogeneity q,(~) is not well-defined (i.e., 
does not converge). To circumvent this problem, we take the derivative of 
(C.30) with respect to a, yielding 

1 f .~ +ib 
D(~) + ~ J_~ +iO dfl K(~ -- fl) D(fi) -- ~(~) (C.31) 

From this new equation for the derivative of D(e), b(~), we can calculate 
the Fourier transform 

/)(t) = q~(t)/[1 +/~(t)]  (C.32) 

From the inverse transform b(~) one then finds D(~) up to an integration 
constant: 

f f ~  e i~t , D(~)= d ~ b ( ~ ) + c o n s t =  dt - i t  D(t )+cons t  (C.33) 
O9 
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The constant can be obtained from the asymptotic behavior of the integral 
equation (C.30) for D(~): 

D(+__ oo) = ~(___ oo)/ [ I  + / ( (0 ) ]  (C.34) 

In calculating D(:~) explicitly we have to distinguish the two possibilities 
D R and D L corresponding to the different forms ~R and ~L for ~. The 
results are given in Table IV. To obtain the expressions for DR(a) and 
DL(a) we used ref. 17, Eq. (3.524.23). 

Consider again the integral I D  in (C.28). Using the symmetry 
R(--c~*)=R*(e) ,  one can combine the contributions coming from both 
tails into a single integral: 

f2T [ D  = da[DR'C(~) R(ct) + DR'L(--0r R*(~)] (C.35) 

Table IV. Explicit Results Needed for Calculation of 
the Function D (o )  for - 1  < A < I  and A =  --1 

- - l < d < l  A= -1  

e ~ e" --i i 4~(a)= 

3n(t)= 

DR(~) = 

~( i oo ) = 

DR(_+oo)= 

DL(~) = 

CL(_+oo)= 

Dr'(• oo) = 

e ~ - - e  -~121'-4~ e ~ - - e  iO~ 1 --(~o--io:  (ko + & 

e ~ e ~ i i 

e~ _ ei( 2u + r e~ _ ei4O l+q~o+& ~o+i~ 

e,(. ~o) --i fe ~o,, t~>0 
-i2cosh/~--------~ l+e  l'-------~(e(l ~o)~, t<0 

e ,o,+~o) i fe (1+~o),, t~>0 
i 2 cosh/1~ l + e-itm (e-r176 t < 0 

In[ c~176 # ] J  'n{c~176 

)T 

+ ~  

+ i -  
- -  2 

7r 

+~ 
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Here DR'L(~) and DR'L(--~*), with c~-a+ib+al ,  can be expanded for 
large values of a as 

7Z D R, L(a)~ V- i~  + 2~e- '~ + i,o0+ 0(~3) (C.36a) 

7g DR'L(--~ *) " .  "-}- i ~ + 2 ~ * e  - s a l -  is~~ + (fi((~,)3) (C.36b) 

This result can now be inserted into (C.35). The contribution of the leading 
terms on the right in (C.36a) and (C.36b) is 

~ oo + ib 

+_~ daIm(S(a))= _+~lnH (C.37) 
rib 

where we used the relation (C.10) for In H. The correction terms in (C.36), 
proportional to ~ = e  ,(a+ib), yield contributions to ID of order ~2, since 
R(a) -S (a )  in (C.35) is also proportional to ~ [see (C.19b)]. Replacing 
S(a) in (C.35) by So(a), which is the dominant contribution for a ~ o% 
and using the expansion (C.19b) of So in terms of ~, one finds that 

I D ~ + ~z In H+ 4sTo(is)[~2# s~176 + (~,)2 e-i,~0] (a -} oo) (C.38) 

with definition (C.22) for 7"0(i(~ ). 
We can now collect our results. Insertion of (C.38) into the expression 

(C.26) for the free energy yields in combination with (C.25) for ~ in terms 
of y and In H: 

-flF(h, y ) =  - flF(O, O) 1 To(is) 2~s [ ~o--~] 2 [(ry + i in H) 2 e '~~ 

+ ( r y - i l n  H) 2 e-/*o~ ( a ~  oo) (C.39) 

Fortunately, the prefactor {To(is)/ETo(O)] 2} in (C.39) has already been 
calculated by Yang and Yang (~4~ in their study of the quantum Heisenberg 
chain. Its value is equal to ~2/8#(~ - #) if - 1 < A < 1 and equal to ~/4 for 
A = -  1. After some elementary algebra one finds that Eq. (C.39) for 
F(h, y) can also be cast into the form (4.7) presented in Section 4. 

It is now straightforward to calculate the Legendre transforms F(x, y) 
and F(h, v) of F(h, y). As shown in Section 2, the polarization x can be 
expressed in terms of In H and y as 

o(-/~r(h, y)) 
x = 2  ~ ( - ( ~  y c~176176 (C.40) 
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(Here we used the abbreviation r = n - #  if - I < A <  1 or r=n for 
A = - 1, respectively.) Hence x is equal to zero for In H =  0 and y = 0. By 
solving Eq. (C.40) for In H and inserting the result into the Legendre trans- 
formation -flF(x, y)= -flF(h, y ) - � 8 9  In H, we obtain the expansion 
(4.8) of F(x, y) for small values of x and y. 

The expansion of F(h, v) for small h and v can be calculated in an 
analogous way. First we express in V=  2fly in terms~of In H and y: 

In V=  - 2  ~(-flF(h'oy y)). h=rcos(sq~o)y-sin(sq~o)ln H (C.41) 

Note  that v = 0 if (h, y) = (0, 0). It  is easy to calculate y as a function of 
In H and in V from (C.41). Substitution of the result into the Legendre 
transformation - f lF(h ,  v)= -fiF(h, y)+ �89 y In V finally yields Eq. (4.9) for 
the free energy F(h, v). 

APPENDIX D. DETAILS CONCERNING THE ANALYTICAL 
SOLUTION ( a = n )  FOR A < - - 1  

The structure of this Appendix is as follows. First we consider the free 
energy F(h, y), which is given by the maximum of In A R and In AL (see 
Section 2). We calculate In A R and In AL and compare the two, in order to 
determine which is the larger one. This is done for the parameter  intervals 
- 2 < b ~< ~b o and ~b o < b < 2 separately. In addition, we calculate the 
derivatives of F(h, y) with respect to a and b in y = 0. These derivatives are 
needed to carry out the Legendre transformation in Section 3. 

A general expression for In AR and In Ac is obtained by insertion 
of the Fourier expansion (3.1) of the distribution function R(u, b) into 
Eq. (2.20). The result is 

l n A R . c =  _+~ (ln t / + l n  H)+~-~  n= - ~ /~, -~ qsR'C(u,b)e-inUdu (D.1) 

This equation is the starting point for our detailed calculations below. 

D . 1 .  - ~ < b ~ < r  

First we consider b in the interval - 2  < b ~< ~bo. We insert the explicit 
form of ~bR(u, b) from Table I into (D.1) and transform to new variables 
z =e  -iu if n~>0 in (D.1) or z=e  ~" if n < 0 .  The advantage of splitting the 
sum into terms with n 1>0 and n < 0  is that consequently all integrals 
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occurring in In A R have the same form. The calculation of integrals of this 
type is discussed in Appendix E: 

(z 1 l n A R = ~ ( l n t / + l n H ) - ~ - s  ~_o/?,  In e~O_--~i--z ]+2 z" ldz 

H e r e  C is a closed contour of integration running counterclockwise along 
the unit circle Izl = 1. Using the results of Appendix E, Table V, row 3, one 
finds 

1 1 
In AR = ~ (in r/+ In H) + ~ (). -- ~b o + b) + 

~ e ~" sinh(2 - ~bo)n 
+ 

,, = 1 n cosh 2n 

~ ( - 1 ) "  sinh bn 
. = 1 n cosh )~n 

(D.3) 

Inserting ln H, (3.9), into (D.3), we obtain the final result ln A s =  
--flF(h, y = 0 ) ,  (3.11), given in Section 3. 

Next we calculate In AL for b in the same interval and show that for 
all values of b in this interval, ln A R is greater than ln A L. We insert 
q~L(U, b) from Table I into Eq. (D.1) and apply the same transformations 
to the unit circle as were discussed above. The integrals on the right can 
be calculated using Table V, rows 5 and 1, of Appendix E. As a result, one 
finds 

1 i /~, In . . . .  + 2  z" ldz  In AL = -- 2 (ln q + in H) + 2-~ n 1 \e2~'+~~ z /  

- ~ ~_,r z -e  ')'-'~ } (D.4> 
.-o t 7-7  ---7 ) 

l ( l n r / + l n H ) §  2 ~ 1 ~ sinhbn 
= - ~ + - e(-X - •0)- tanh 2n + n c-~sla 7n 

n = l  n n = l  

(D.5) 

where C is the same integration path as in (D.2). To show that In AL 
is smaller than In A R, we invert the definition of ~b o in terms of r/ (see 
Table I) to obtain the following expression for in ~/: 

l n ~ = ~ o + 2  - e sinh ~bon (D.6) 
n = l  F/ 
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Next we insert Eq. (D.6) into Eq. (D.5). After some algebra one can show 
that Eq. (D.5) is equivalent to 

1 @ sinh ~bon - sinh bn 
In A L - in AR = -- ~ (q~o -- b) - ,~= 1 n cosh 2n (D.7) 

showing that for - 2 < b < ~ b  o the difference between In A L and ln A R is 
always negative. 

For  b=~b o we use the results of Table V, rows 2 and 4, to obtain 
In AR = In AL = -- ~F(h, y = 0). 

D.2. r < k  

In this case the free energy F(h, y) is determined by In AL, as we shall 
see below. We find again the expression (D.4) for In AL, where the integrals 
can now be taken from Table V, row 3. Using the result for in H, (3.9), we 
find for in AL 

1 1 ~ e -~'n sinh(2 + ~bo)n 
In A L = - -  ~ In ~/+ ~ (2 + ~b0) + ,z-"= 1 n cosh 2n (D.8) 

With the use of Eq. (D.6) for In ~/in terms of ~bo one can easily show that 
(D.8) is equal to the result (3.11) for - ~ F ( h ,  y = 0) presented in Section 3. 

Next we calculate In AR for ~b0< b < 2  and check that In AR < l n  AL 
for all b in this interval. Combinat ion of Eq. (D.2) and Table V, rows 1 
and 5, gives 

n = 1 n n = 1 n cosh 2n 

From this result one can show with the help of Eq. (D.6) that the difference 
between ln AR and ln AL is negative for all b in the interval under 
consideration: 

1 ~, sinh bn - sinh ~bon 
l n A R - - l n A L =  - ~ ( b - ~ b ~  "-" n c o s h 2 n  <O 

n = l  

D.3. Ca lcu la t ion  of  (3aF(h, y) and ~bF(h, y) for  y = 0  

To calculate the derivatives ~aF(h, y) and ~bF(h, y) of the free energy 
F(h, y), we start from, respectively, Eq. (2.25) and Eq. (2.26) with a =  7r. 
From the above we conclude that the relevant choice for ~(u, b) is ~ = ~R 
for - 2 < b ~ < ~ b  o and ~ = ~ e  for ~bo<b<2.  We insert the derivatives 
(c~,R)o (u, b) [see (3.12)] and (c3bR)0 (u, b) [see (3.14)] of the distribution 



198 Nolden 

function Ro(u, b) into (2.25) and (2.26). After a transformation z = e iu (or 
z -iu) we obtain integrals of the same type as in Sections D.1 and D.2, 
which can be looked up in Table V of Appendix E. In addition, (2.26) con- 
tains integrals of the form ~_~ ?b~(u, b) R(u, b) du, which can be reduced 
to standard integrals of type 

The path of integration C is directed counterclockwise along the unit circle. 
For  the derivative OaF(h, y) one obtains in this way the following 

result: 

1 
-flOaf(h, y)= +-2 Oalng+-R~ [ 2 T ( ~ b ~  

+ ~ (-1)nsinh[2T(O~ 
n=l  n cTsh ~-/'/ ) (D.10) 

With ~?a In H = 0 for a = ~z this result is identical to Eq. (3.20) presented in 
Section 3. Similarly one finds for t?bF(h, y) 

_~ abF(h, y) = +_ 10b In H i  Ro(~, b) (D.11) 

Using the result (3.18) that ~?b in H =  - 2 R o ( e ,  b), we see immediately that 
~bF(h, y = 0 ) = 0  for all b in the interval ( - 2 ,  4). 

A P P E N D I X  E. S O M E  T E C H N I C A L  RESULTS FOR 
A < - - I  A N D  a=Tr  

All integrals occurring in the analytical solution (a = re) for A < - 1  
(Section 3 and Appendix D) have the same form, namely 

; [  ( z - A C ]  z n n 

The integration path D is the unit circle [z[ = 1, described counterclock- 
wise. The parameters A, B, and C are real numbers, A and B being positive 
with A < B. 

The integrand in (E.1) has logarithmic singularities on the real axis at 
z = A and z = B. For  n = 0 there occurs an additional pole at z = 0. The 
situation in the complex z plane depends on the values of A and B. 
A sketch for the example A < 1 < B is drawn in Fig. 6 for n > 0 and for 
n = 0. The branch cuts as well as the arguments of the complex logarithm 
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are the same for all combina t ions  of  A and B. The  con tour  of  integration,  
however,  is slightly different for the var ious cases. Here  we discuss the 
example  A < 1 < B in some detail; results for different combina t ions  of A 
and B are collected in Table  V. 

We focus on A < 1 < B. As can be seen f rom Fig. 6, the closed contour  
does not  contain singularities for any value of n >/0. First  consider n > 0. 
We choose the closed contour  il lustrated in Fig. 6, involving the unit circle, 
two paths along the real axis described in opposi te  directions and on 
opposi te  sides of the branch cut, and a small circle a round  z = A whose 
radius e will eventually be made  to approach  zero. Apar t  f rom the sought  
integral over  the unit circle (E.1), in the limit e -* 0 there are nonvanishing 
contr ibut ions  to the con tour  integral coming from the pieces along the real 
axis. Their  value is, for n > 0, 

lim in + C + i~ + irc x" X dx 
e ~ O  l 

1 x - - A  + i~ 1 x n-1 dx} 
=lim{~o . . . .  2re/[(n 1)n ( A - ~ ) " ] }  = -2 rc i  [ ( -  1 ) " -  A " ] n  

This yields the result in row 3 of Table  V for I(n) (n > 0). 
Along similar lines, one finds a contr ibut ion 27zi In A for n = 0, plus an 

addi t ional  cont r ibut ion  coming from the pole at z = 0. The  two integrals 
over  the upper  and lower half-circle [z[ = e (see Fig. 6b) together  are equal 

n>O 

B R 

-R 

n=O 

-1 B Tt 

- / I  -IT 

Fig. 6. Branch cuts and contour of integration in the complex z plane for A< 1 <B. 
The values of the argument of the complex logarithm are indicated on either side of the cuts. 
(a) n>O; (b) n=O. 
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Table V. Results for the Integral (E.1) for Di f ferent  
Combinations of A and B 

l(n), n > 0  l(n), n = 0  

1. A < B <  1 (2zci/n)[(--1)"-- 1 -- A" + B n] 2rdC 
2. A < B =  1 ( 2 z c i / n ) [ ( - 1 ) " - A  "] 2~ziC 
3, A < 1 < B  (27ri /n)[(--1)"-A"] 2 r c i [ C - l n  B] 
4. A = 1 < B  ( 2 ~ i / n ) [ ( - 1 ) " -  1] 2~z i [C- ln  B] 
5. 1 < A  < B  ( 2 ~ i / n ) [ ( - 1 ) " -  1] 2~z i [C- ln  B + l n  A] 

to - 2 ~ i ( C - l n  B + i n  A). Combinat ion of all terms leads to the result 
given for n = 0 in Table V, row 3. 

The integrals occurring in Eqs. (2.22), (2.28), and (2.29) for a = ~ have 
to be handled in a slightly different way: Defining z = e iw with 0 ~< w ~< 27z, 
we can write the integrand in the same form as in Eq. (E.1). In order to 
get the right branch of the logarithm, however, in this case we choose the 
complementary branch cut in the complex z plane, lying on the real axis 
between A and B with w = 0 on the upper side of the cut and w = 21r on 
the lower side. This leads to a slightly different integration contour /3. 
Similar calculations as above yield the following results for A < 1 < B: 

In ~ +C z ~ - l d z =  2rd[C_lnB+irc],  n = 0  (E.2) 
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